

Correction to "Organocatalytic Enantioselective Intramolecular Oxa-Michael Reaction of Enols: Synthesis of Chiral Isochromene"

Biswajit Parhi, Jitendra Gurjar, Suman Pramanik, Abhisek Midya, and Prasanta Ghorai*

J. Org. Chem. 2016, 81 (11), 4654-4663. DOI: 10.1021/acs.joc.6b00565

The catalyst structure in Table 1 was omitted from the final publication. The full table is provided below.

Table 1. Optimization of the Reaction Conditions

entry	2	solvent	temp (°C)	time (h)	yield ^b (%)	ee ^c (%)
1	2a	1,2-DCE	rt	4	3	79
2	2b	1,2-DCE	rt	4	42	94
3	2c	1,2-DCE	rt	4	16	91
4	2d	1,2-DCE	rt	4	12	78
5	2e	1,2-DCE	rt	4		
6	2f	1,2-DCE	rt	4	21	87
7	2g	1,2-DCE	rt	4	10	89
8	2b	toluene	rt	4	29	94
9	2b	PhCl	rt	4	38	92
10	2b	PhH	rt	4	36	87
11	2b	CH ₃ CN	rt	4	22	81
12	2b	F ₃ CCH ₂ OH ^f	rt	4		
13	$2b^d$	1,2-DCE	rt	4	9	94
14	$2b^e$	1,2-DCE	rt	4	43	86
15	2b	1,2-DCE	10	4	36	92

 a All of the reactions are carried out on 0.02 mmol scale. b The conversion was calculated on the basis of 1 H NMR spectroscopy of the crude reaction mixture using anisole as the internal standard. c Enantiomeric excess were determined by HPLC analysis on a chiral stationary phase. d 5 mol % catalyst was used. e 15 mol % catalyst was used. f CF $_3$ CH $_2$ OH is non-nucleophilic, as MeOH gave the exoacetal. 12c